<body><script type="text/javascript"> function setAttributeOnload(object, attribute, val) { if(window.addEventListener) { window.addEventListener('load', function(){ object[attribute] = val; }, false); } else { window.attachEvent('onload', function(){ object[attribute] = val; }); } } </script> <div id="navbar-iframe-container"></div> <script type="text/javascript" src="https://apis.google.com/js/platform.js"></script> <script type="text/javascript"> gapi.load("gapi.iframes:gapi.iframes.style.bubble", function() { if (gapi.iframes && gapi.iframes.getContext) { gapi.iframes.getContext().openChild({ url: 'https://www.blogger.com/navbar/8968604820003269863?origin\x3dhttp://webwormcpt.blogspot.com', where: document.getElementById("navbar-iframe-container"), id: "navbar-iframe" }); } }); </script>

Chemical Process Technology

Continue to learn tips, knowledge and experience about Chemical Process Technology...

Enter your email address:


CLOSE WINDOW


 

Chemical & Process Technology

A place to share knowledge, lesson learnt...

Sunday, December 27, 2009

Recommended :
Tips on Succession in FREE Subscription
Subscribes to FREE Hydrocarbon Processing

This post is in response to some readers request for calculation of Wetted Surface Area For VERTICAL Cylindrical vessel with Elliptical Head.


Earlier post "Calculate Wetted Surface Area For Horizontal Vessel With Elliptical Head" has presented an accurate equation may be used to calculate wetted surface area for Horizontal Cylindrical Vessel with Elliptical Head. Simplified equations also presented in "Calculate Wetted Surface Area For Horizontal Vessel With Elliptical Head (Simplified)"
to calculate the wetted surface area.
 

This principle in deriving Wetted Surface Area For VERTICAL Cylindrical vessel with Elliptical Head was based on the accurate equations as presented in "Calculate Wetted Surface Area For Horizontal Vessel With Elliptical Head". Two main principles used were :
  • horizontal vessel liquid height (H) reached maximum level (d) where H = d
  • horizontal vessel tan-tan length (L) equal to the vessel vessel liquid height ( l) where L = l
Wetted Surface Area (Cylindrical section)
Wetted Surface Area for Cylindrical section can be calculated with following equation :



Wetted Surface Area (Elliptical head)
Wetted Surface Area for Elliptical head (one head) can be calculated with following equation :



where
d = Vessel inside diameter (m)
l = Liquid height from bottom tangent line (m)

Example
An ellipsoidal heads VERTICAL vessel with internal diameter (d) of 1m and liquid level height from bottom tangent line is 2m. Determine wetted surface area. 
 
d = 1m
l = 2m
Awet,Cyl = PI x d x l = PI x 1 x 2 = 6.28 m2
Awet,Head = 1.084 x d^2 = 1.084 x 1^2 = 1.084 m2
Total wetted surface area, Awet,total = Awet,Cyl + Awet,Head = 7.37 m2

Ref : "Accurate Wetted Areas for Partially Filled Vessels", by Richard C. Doane, "Chemical Engineering", December 2007
Download

*If you have any useful program and would like to share within our community, please send to me.

Related Post

Labels: ,

posted by Webworm, 8:39 AM

0 Comments:

Post a Comment

Let us know your opinion !!! You can use some HTML tags, such as  <b>, <i>, <a>

Subscribe to Post Comments [Atom]

Home:

<< Home