<body><script type="text/javascript"> function setAttributeOnload(object, attribute, val) { if(window.addEventListener) { window.addEventListener('load', function(){ object[attribute] = val; }, false); } else { window.attachEvent('onload', function(){ object[attribute] = val; }); } } </script> <div id="navbar-iframe-container"></div> <script type="text/javascript" src="https://apis.google.com/js/plusone.js"></script> <script type="text/javascript"> gapi.load("gapi.iframes:gapi.iframes.style.bubble", function() { if (gapi.iframes && gapi.iframes.getContext) { gapi.iframes.getContext().openChild({ url: 'https://www.blogger.com/navbar.g?targetBlogID\x3d8968604820003269863\x26blogName\x3dChemical+%26+Process+Technology\x26publishMode\x3dPUBLISH_MODE_BLOGSPOT\x26navbarType\x3dBLUE\x26layoutType\x3dCLASSIC\x26searchRoot\x3dhttp://webwormcpt.blogspot.com/search\x26blogLocale\x3den\x26v\x3d2\x26homepageUrl\x3dhttp://webwormcpt.blogspot.com/\x26vt\x3d6402931565399164945', where: document.getElementById("navbar-iframe-container"), id: "navbar-iframe" }); } }); </script>

Chemical Process Technology

Continue to learn tips, knowledge and experience about Chemical Process Technology...

Enter your email address:


CLOSE WINDOW


 

Chemical & Process Technology

A place to share knowledge, lesson learnt...

Sunday, November 30, 2008

Display problem ? Click HERE

Recommended :

In earlier discussion "Simple Manual Method for Settle Out Condition Estimation", a manual method has been can be considered without using any Process Simulator. This method basically utilising universal gas law (PV=znRT) with the following basis and assumption :
  • Vapor only system
  • No condensation during the process
  • Compressibility factor assumed same for condition before and after settle-out and assumed (z=1)
  • Limited fluid with molecular weight is similar range. Higher the different, higher the deviation
In this method (T x n method), the settle out temperature is calculated using this equation :

Ts = Sum (n1 x T1 + n2 x T2 + n3 x T3 +...) / ns

This method (T x n method) has a particular known issue where it does not considered the impact of Molecular Weight (MW). In the event molecular weight of each sections are different, the calculated settle temperature will not change with molecular weight. In this post, an improved method is introduced to use same derivation per T x n method, however it includes MW as part the calculation. It basically use mass (m) to replace mole (n) which simply name as T x m method.

Derivation
A system consists of n-section with pressure (Pi, kPag), temperature (Ti, K), Molecular weight (MWi), physical volume (Vi, m3) for i-section.

Number of mass in each i-section (before settle-out),

mi = (Pi x Vi x MWi) / (zi x R x Ti).....[1]

Total mass (after settle-out),

ms = Sum (m1 + m2 + m3...).....[2]

Total volume (after settle-out),

Vs = Sum (V1 + V2 + V3...).....[3]

Volume at normal condition (Pi,n = 1.01325 bar & Ti,n = 273.15 K) for each i-section (before settle-out)

Vi,n = (Pi x Vi / Ti) /(Pi,n / Ti,n)......[4]

Total volume at normal condition (after settle-out)

Vs,n = Sum (V1,n + V2,n + V3,n...).....[5]

mi x Ti for each i-section (before settle-out),

mi x Ti = (Pi x Vi x MWi) / (zi x R).....[6]

Total ms x Ts (after settle-out),

ms x Ts = Sum (m1 x T1 + m2 x T2 + m3 x T3 +...).....[7]

Thus, From [7] and [2],
Settle-out temperature (Ts),

Ts = Sum (m1 x T1 + m2 x T2 + m3 x T3 +...) / ms .....[8]


Settle-out pressure (Ps),

Ps = (1.01325) x (Vs,n / Vs) x (Ts / 273.15)......[9]


Case Study
There are five sets of system with each system has 3 section will be settled-out. The five set of fluid will have same pressure and temperature prior to settle out, however the composition of each section will be difference as follow :

Composition Set 1 :
Section 1 : Methane : 100%
Section 2 : Methane : 100%
Section 3 : Methane : 100%

Composition Set 2 :
Section 1 : Ethane : 100%
Section 2 : Methane : 100%
Section 3 : Methane : 100%

Composition Set 3 :
Section 1 : Ethane : 100%
Section 2 : Methane : 100%
Section 3 : Methane : 50%, Ethane : 20%, Propane : 30%

Composition Set 4 :
Section 1 : Propane : 100%
Section 2 : Propane : 100%
Section 3 : Methane : 50%, Ethane : 20%, Propane : 30%

Composition Set 5 :
Section 1 : Propane : 100%
Section 2 : Propane : 100%
Section 3 : Ethane : 40%, Propane : 60%

Image below display the results of HYSYS Settle-out using method in "Simple Method For Compressor Settle Out (Vapor Only) Using HYSYS", T x n and T x m methods.

Labels:

posted by Webworm, 1:22 PM

0 Comments:

Post a Comment

Let us know your opinion !!! You can use some HTML tags, such as  <b>, <i>, <a>

Subscribe to Post Comments [Atom]

Links to this post:

Create a Link

Home:

<< Home